NEW REACTIONS OF THIOBENZOPHENONE S-METHYLIDE

Li Xingya and Rolf Huisgen *

Institut für Organische Chemie der Universität, D-8000 München 2, Karlstr. 23, Federal Republic of Germany

Summary 2,2-Diphenyl-1,3,4-thiadiazoline, prepared from thiobenzophenone and diazomethane at -78°C, extrudes N₂ at -45°C and allows to study in situ 1,3-cycloadditions of thiobenzophenone S-methylide (<u>3</u>) with electrophilic C=S, C=C, C≡C, and N=N bonds.

We reported recently that thiobenzophenone combines with one equiv. of diazomethane at -78° C in THF to furnish quantitatively 2,2-diphenyl-1,3,4-thiadiazoline (1), which eliminates nitrogen at -45° C with a half-life of 55 min.¹ The intermediate thiobenzophenone S-methylide (3) undergoes head-head dimerization to give the 1,4-dithiane derivative 2.

When a dipolarophile d=e was added at -78° C to the solution of 1, the thiocarbonyl ylide 3, generated on warming to -30° C, furnished the cycloadduct 4.¹ Thiobenzophenone or xanthione as dipolarophiles gave 1,3-dithiolanes whereas tetracyanoethylene, maleic anhydride and N-methylmaleimide afforded tetrahydrothiophenes. Also dimethyl acetylenedicarboxylate and azodicarboxylic ester were suitable dipolarophiles; in contrast, dimethyl fumarate and methyl propiolate failed to react.¹

The scale of applicable dipolarophiles can be substantially extended by the simple trick of carrying out the in situ cycloadditions at -45° C. The stationary concentration of thiobenzophenone S-meth-ylide (3) is smaller at -45° C than at -30° C so that many further dipolarophiles (usually 1.1 equiv.) win in the competition for 3 over the dimerization. Thus, the adducts of Table 1 were prepared.²

Amongst the two conceivable directions of addition to aromatic thicketones, the thiccarbonyl ylide 3 chooses the "thicphilic" one, i.e., its nucleophilic CH_2 group (vide infra) becomes bonded to the thicketone sulfur as testified by the reductive hydrogenolysis of the 1,3-dithiclanes.^{1,3,4} The struc-

Dipolarophile	% Yield	m.p. (⁰ C)	Formula
Thiobenzophenone	95	202 - 203	
4,4'-Dimethoxythiobenzophenon	85	181 - 183	5
Xanthione 1	84	158 - 160	8
Thioxanthione ¹	95	149 - 151	9
Thiofluorenone	82	236 ⁰ (dec)	10
4, 5-Dioxo-1, 3-dithiolane-2-thione	75	198 - 199	11
Methyl dithio-1-naphthoate	87	151 - 153	12
Diphényl trithiocarbonate	85	162 - 163	
Methyl acrylate	80	78.5 - 79.5	16
Dimethyl fumarate	80	146.5 - 148	13
Dimethyl maleate	65	120 - 122	15
Tetramethy! ethylenetetracarboxylate	28	129 - 131	18
Maleic anhydride 1	96	126 - 128	
N-Methylmaleimide	80	174 - 176	
N-Phenylmaleimide ¹	79	208 - 209	
Acrylonitrile	76	141 - 143	17
Fumaronitrile	92	198 - 200	14
Tetracyanoethylene ¹	89	177 - 178.5	
Dimethyl 2,3-dicyanofumarate	82	196 - 197	
Dimethyl acetylenedicarboxylate 1	70	140 - 142	19
Methyl propiolate	19	101.5 - 102.5	20
Dimethyl azodicarboxylate	72	98 - 100	
4-Phenyl-1,2,4-triazoline-3,5-dione	87	160 - 162	

Table 1. 1,3-Dipolar cycloadditions of thiobenzophenone S-methylide to various dipolarophiles in tetrahydrofuran at -45°C

tures of "mixed" 1,3-dithiolanes are firmly established by their formation from two reactant pairs; e.g., only 5 fulfils the structural requirements imposed by the formation from 3 + p,p'-dimethoxythiobenzophenone and from the S-methylide 6 + thiobenzophenone. p,p'-Dimethoxythiobenzophenone is converted by diazomethane at -78°C to the crystalline thiodiazoline 7 which extrudes nitrogen in THF solution at -45°C with a half-life of 37 min giving rise to the ylide 6.

Analogously, the dithiolanes $\underline{9}$ and $\underline{10}$ were synthesized by the two independent pathways. Whereas 2-H₂ appeared as a singlet in the ¹H-NMR spectra of 5 (δ 3.66) and the spiro compounds $\underline{8} - \underline{11}$ (4.11, 4.08, 4.28, 3.88), the expected AB spectrum at δ 3.25 and 3.81 with J = 9.3 Hz was observed for $\underline{12}$. The ¹³C-NMR data confirmed that the CH₂ group is the 2-position in all 1.3-dithiolanes of Table 1.

SCHEME 1

The noteworthy MS fragmentation pattern of the mixed 1,3-dithiolanes is illustrated in Scheme 1 by the radical cation of 5. In addition to the two splitting modes which mirror the dichotomy of formation, the occurrence of the tetraarylethylene radical cation indicates the loss of CH_2S_2 . Both 1,1-diarylethylene radical cations are formed from ring carbon atoms which are non-bonded in 5. The radical cation species of the two thioketones lose SH as confirmed by the MS of the pure thioketones; the fluorenylium cation is an attractive structure and constitutes the base peak in Scheme 1.

Thiobenzophenone 5-methylide (3) refuses to accept p,p'-bis(dimethylamino)thiobenzophenone - more nucleophilic than the p,p'-dimethoxy compound - as a dipolarophile; 87% 1,4-dithiane 2 was isolated. Also O-methyl thiobenzoate and thiobenzamide were unreactive. Here resonance provides the CS bond with a higher single bond character than in the dithioester or trithiocarbonates of Table 1.

The cycloadditions of 3 with dimethyl fumarate and dimethyl maleate proceed stereospecifically. The adducts 13 and 15 were isolated with yields of 80% and 65%; the NMR spectra of the mother

liquors did not reveal any mutual admixture. Due to the lower dipolarophilic activity of the cis-1,2-disubstituted ethylene, the maleate adduct <u>15</u> was accompanied by some dimer <u>2</u>. Fumaronitrile gave rise to 92% of the tetrahydrothiophene <u>14</u>, but in the presence of maleonitrile only the dimer <u>2</u> was obtained.

The formation of the 3-carboxylic ester <u>16</u> from <u>3</u> + methyl acrylate is suggested by the highfield methylester singlet at δ 3.31 and by the doublet of doublets for 3-H at 4.03. The 360 MHz ¹H-NMR spectrum of the acrylonitrile adduct ⁵ is fully resolved and only compatible with structure <u>17</u>; the 3H-signal is quoted here: δ 3.95 (dd, J_{3.4A} = 5.6 Hz, J_{3.4B} = 9.0 Hz).

In contrast to tetracyanoethylene which is a top-notch dipolarophile, tetramethyl ethylenetetracarboxylate is a border line case as disclosed by 28% <u>18</u> besides 33% dimer <u>2</u>. The 82% yield of the adduct from dimethyl 2,3-dicyanofumarate gave no indication of steric hindrance.

Whereas dimethyl acetylenedicarboxylate furnished 70% <u>19</u>, methyl propiolate is a limiting case. It required 4M methyl propiolate in THF to obtain 19% of adduct <u>20</u> besides 74% of the dithiane <u>2</u> at -45°C. Propiolic ester is usually regarded as an active electrophile; obviously, the thiocarbonyl ylide <u>3</u> is very selective and prefers to dimerize despite its low stationary concentration at -45°C. The 3-CO₂CH₃ and 4-CO₂CH₃ of <u>19</u> give rise to $\delta_{\rm H}$ 3.40 and 3.73. The intermediate δ 3.53 of <u>20</u> forbids conclusions. The 5-H₂ in <u>20</u> couples with 3.0 Hz which is in accordance with J_{2,3} of cyclopentene (2.1 Hz) and is too large for an allylic coupling; also the analogy with the acrylic ester adduct <u>16</u> supports 20.

The nucleophilic thiocarbonyl ylide $\underline{3}$ does not interact with nucleophilic solvents like methanol, piperidine or aniline. Therefore, decomposition of $\underline{1}$ at -40° C afforded only the dithianc $\underline{2}$, e.g., 84% in methanol. However, a few drops of trifluoroacetic acid changed the reaction course dramatically: 83% of benzophenone O,S-dimethylacetal ($\underline{22}$) was formed which disproportionates in CDCl₃ within several weeks at 25°C. Protonation of $\underline{3}$ at the methylene C-atom leads to the supposed sulfonium ion intermediate $\underline{21}$. Thus, the charge distribution chosen in resonance structure $\underline{3}$ symbolizes the behavior of the 1,3-dipole on protonation and in its cycloaddition to electrophilic π -systems.

REFERENCES

- 1. I. Kalwinsch, Li Xingya, J. Gottstein, and R. Huisgen, J.Am. Chem. Soc., 103, 7032 (1981).
- 2. Satisfactory analyses and spectra were obtained for all new compounds.
- 3. E. Bergmann, M. Magat, and C. Wagenberg, Ber.Dtsch.Chem.Ges., 63, 2576 (1930).
- 4. A. Schönberg, D. Cernik, and W. Urban, Ber. Dtsch. Chem. Ges., <u>64</u>, 2577 (1931).

5. The authors thank Professor M. Schlosser, Université de Lausanne, for the 360 MHz spectrum. (Received in Germany 22 July 1983)